Separating Crop Species in Northeastern Ontario Using Hyperspectral Data
نویسندگان
چکیده
The purpose of this study was to examine the capability of hyperspectral narrow wavebands within the 400–900 nm range for distinguishing five cash crops commonly grown in Northeastern Ontario, Canada. Data were collected from ten different fields in the West Nipissing agricultural zone (46°24'N lat., 80°07'W long.) and included two of each of the following crop types; soybean (Glycine max), canola (Brassica napus L.), wheat (Triticum spp.), oat (Avena sativa), and barley (Hordeum vulgare). Stepwise discriminant analysis was used to assess the spectral separability of the various crop types under two scenarios; Scenario 1 involved testing separability of crops based on number of days after planting and Scenario 2 involved testing crop separability at specific dates across the growing season. The results indicate that select hyperspectral bands in the visual and near infrared (NIR) regions (400–900 nm) can be used to effectively distinguish the five crop species under investigation. These bands, which were used in a variety of combinations include B465, B485, B495, B515, B525, B535, B545, B625, B645, B665, B675, B695, B705, B715, B725, B735, B745, B755, B765, B815, B825, B885, and B895. In addition, although species classification could be achieved at any point during the growing season, the optimal time for satellite image acquisition was determined to be in late July or approximately 75–79 days after planting with the optimal wavebands located in the red-edge, green, and NIR regions of the spectrum. OPEN ACCESS Remote Sens. 2014, 6 926
منابع مشابه
Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral Images and LiDAR Data
Identification of crop species is an important issue in agricultural management. In recent years, many studies have explored this topic using multi-spectral and hyperspectral remote sensing data. In this study, we perform dedicated research to propose a framework for mapping crop species by combining hyperspectral and Light Detection and Ranging (LiDAR) data in an object-based image analysis (O...
متن کاملMapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery
An efficient means to map tree plantations is needed to detect tropical land use change and evaluate reforestation projects. To analyze recent tree plantation expansion in northeastern Costa Rica, we examined the potential of combining moderate-resolution hyperspectral imagery (2005 HyMap mosaic) with multitemporal, multispectral data (Landsat) to accurately classify (1) general forest types an...
متن کاملApplications of Low Altitude Remote Sensing in Agriculture upon Farmers' Requests– A Case Study in Northeastern Ontario, Canada
With the growth of the low altitude remote sensing (LARS) industry in recent years, their practical application in precision agriculture seems all the more possible. However, only a few scientists have reported using LARS to monitor crop conditions. Moreover, there have been concerns regarding the feasibility of such systems for producers given the issues related to the post-processing of image...
متن کاملHyperspectral Remote Sensing For Agricultural Management: A Survey
Hyperspectral sensors are devices that acquire images with narrow bands (less than 20nm) with continuous measurement. It extracts spectral signatures of objects or materials to be observed. Hyperspectral have more than 200 bands. Hyperspectral remote sensing has been used over a wide range of applications, such as agriculture, forestry, geology, ecological monitoring, atmospheric compositions a...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014